Input and Output - Making Interactive
Programs

Introduction

Hello, future programmers! Today, we're learning about input and output in Python - the key to making
interactive programs. These are the skills that turn your code from something that just runs
automatically into something that can have a conversation with users. Let's dive in!

What are Input and Output?

* Qutput: Information that your program shows to the user (like text, numbers, or graphics)
* Input: Information that the user gives to your program (like typing answers or clicking buttons)

Think of it like a conversation;

* When you speak to someone, that's output
* When you listen to their response, that's input

Basic Output with print()
The print () function is the simplest way to display output:
print("Hello, world!'")

print("My name is Python.")
print("I am a programming language.")

You can print multiple items by separating them with commas:

name = "Alex"
age = 10
print("Name:", name, "Age:'", age)

Basic Input with input()

The input () function lets your program get information from the user:
name = input("What is your name? ")

print("Hello,", name, "!")

When your program runs this code:

1. Tt shows the message "What is your name? "

2. It waits for the user to type something and press Enter
3. It stores what the user typed in the variable name

4. Tt then continues to the next line of code

Important: input() Always Returns a String
The input () function always gives you a string, even if the user types a number:

age_string = input("How old are you? ")
print(type(age_string)) # Will show <class 'str'>

If you need a number, you must convert the input:

age_string = input("How old are you? ")

age = int(age_string) # Convert to integer
next_year = age + 1

print("Next year, you'll be", next_year)

You can also do this in one line:

age = int(input("How old are you? "))
next_year = age + 1
print("Next year, you'll be", next_year)

Handling Different Types of Input

For integers (whole numbers):

age = int(input("How old are you? "))

For floats (decimal numbers):

height = float(input("How tall are you in meters? "))

For strings (text):

name = input("What is your name? ")

For yes/no questions:

answer = input("Do you like pizza? (yes/no) ")
if answer.lower() == "yes":

print("Me too!")
else:

print("That's okay!")

Formatting Your Output

You can make your output look nicer in several ways:

Using f-strings (Python 3.6+)

name = "Emma"

age = 11

print(f"Hello, my name is {name} and I am {age} years old.")

Using multiple print statements

print("*" * 30)
print("* WELCOME TO MY PROGRAM *")
print("*" * 30)

Adding spaces and new lines

\n creates a new line
print("Line 1\nLine 2\nLine 3")

\t adds a tab
print("Name:\tAlex\nAge:\t10")

Making Your Program Pause

Sometimes you want your program to wait for the user before continuing:

print("welcome to the Adventure Game!")
input("Press Enter to continue...")
print("You find yourself in a dark forest...")

Error Handling

When getting input, things can go wrong. For example, what if the user types "ten" instead of "10"?
Let's handle that:

try:
age = int(input("How old are you? "))
print("Next year, you'll be", age + 1)
except ValueError:
print("That's not a valid number!'")

Hands-on Activities

Activity 1: Simple Calculator

print("Simple Calculator")
print("----------------- ")

Get input from the user

numl = float(input("Enter first number: "))

num2 = float(input("Enter second number: "))
operation = input("Enter operation (+, -, *, /): ")

Perform calculation based on the operation
if operation == "+":
result = numl + num2
print(f"{numi} + {num2} = {result}")
elif operation == "-":
result = numl - num2
print(f"{numi1} - {num2}
elif operation == "*";

{result}")

result = numl * num2
print(f"{num1} * {num2} = {result}")
elif operation == "/":
if num2 != 0: # Check for division by zero
result = numl / num2
print(f"{numi} / {num2} = {result}")
else:
print("Error: Cannot divide by zero!")
else:
print("Error: Invalid operation!")

Activity 2: Mad Libs Story Generator

print("MAD LIBS STORY GENERATOR")
print("----------------------- ")

Get input from the user

name = input("Enter a name: ")

animal = input("Enter an animal: ")

place = input("Enter a place: ")

adjective = input("Enter an adjective (describing word): ")
verb = input("Enter a verb ending in 'ing': ")

Create the story

Story — fll nn

Once upon a time, there was a {adjective} {animal} named {name}.

{name} loved {verb} in {place}.

Everyone in {place} thought {name} was the most {adjective} {animal} ever!

Display the story
print("\nHere's your story:")
print("----------------- ")
print(story)

Activity 3: Quiz Game

print("PYTHON QUIZ GAME")
print("-------------- ")
print("Answer these questions to test your Python knowledge!")

score = 0

Question 1
answerl = input("What symbol is used for comments in Python? ")
if answerl == "#":
print("Correct!")
score += 1
else:
print("Incorrect. The answer is #")

Question 2
answer2 = input("What function do you use to get input from the user? ")
if answer2 == "input" or answer2 == "input()":
print("Correct!")
score += 1
else:
print("Incorrect. The answer is input()")

Question 3
answer3 = int(input("How does Python count the first character in a string? (Enter
a number) "))
if answer3 ==
print("Correct!")
score += 1
else:
print("Incorrect. The answer is 0@ (zero-indexed)")

Final score
print(f"\nYour final score: {score}/3")
if score ==
print("Perfect score! You're a Python wizard!")
elif score >= 1:
print("Good job! Keep practicing!")
else:
print("Keep studying! You'll get better!")

Wrap-up

Congratulations! You now know how to create interactive programs that can get information from users
and display customized output. This opens up a whole new world of possibilities for your programs.

Challenge: Adventure Game

Create a simple text adventure game that:

1. Asks the user for their name and greets them

2. Presents them with a scenario (e.g., "You're in a cave with two tunnels")

3. Gives them choices (e.g., "Do you go left or right?")

4. Has different outcomes based on their choice

5. Includes at least one numerical input (e.g., "How many steps do you take?")

Remember to use appropriate input validation and make your game fun with descriptive text!

	Input and Output - Making Interactive Programs
	Introduction
	What are Input and Output?
	Basic Output with print()
	Basic Input with input()
	Important: input() Always Returns a String
	Handling Different Types of Input
	For integers (whole numbers):
	For floats (decimal numbers):
	For strings (text):
	For yes/no questions:

	Formatting Your Output
	Using f-strings (Python 3.6+)
	Using multiple print statements
	Adding spaces and new lines

	Making Your Program Pause
	Error Handling
	Hands-on Activities
	Activity 1: Simple Calculator
	Activity 2: Mad Libs Story Generator
	Activity 3: Quiz Game

	Wrap-up
	Challenge: Adventure Game

